What is The Stability of Shıp ?
Ship stability, as it pertains to naval architecture, has been taken into account for hundreds of years. Historically, ship stability calculations for ships relied on rule of thumb calculations, often tied to a specific system of measurement. Some of these very old equations continue to be used in naval architecture books today. However, the advent of calculus-based methods of determining stability, particularly Pierre Bouguer's introduction of the concept of the metacenter in the 1740s ship model basin allows much more complex analysis.
Master shipbuilders of the past used a system of adaptive and variant design. Ships were often copied from one generation to the next with only minor changes being made; by replicating a stable design serious problems were not often encountered. Ships today still use the process of adaptation and variation that has been used for hundreds of years; however computational fluid dynamics, ship model testing and a better overall understanding of fluid and ship motions has allowed much more analytical design.
Transverse and longitudinal waterproof bulkheads were introduced in ironclad designs between 1860 and the 1880s, anti-collision bulkheads having been made compulsory in British steam merchant ships prior to 1860.[1]Before this a hull breach in any part of a vessel could flood the entire length of the ship. Transverse bulkheads, while expensive, increase the likelihood of ship survival in the event of damage to the hull, by limiting flooding to breached compartments separated by bulkheads from undamaged ones. Longitudinal bulkheads have a similar purpose, but damaged stability effects must be taken into account to eliminate excessive heeling. Today, most ships have means to equalize the water in sections port and starboard (cross flooding), which helps to limit the stresses experienced by the structure and also to alter the heel and/or trim of the ship.
When a hull is designed, stability calculations are performed for the intact and damaged states of the vessel. Ships are usually designed to slightly exceed the stability requirements (below), as they are usually tested for this by a classification society.
Intact stability
Damage stability (Stability in the damaged condition)Intact stability calculations are relatively straightforward and involve taking all the centers of mass of objects on the vessel which are then computed/calculated to identify the center of gravity of the vessel, and the center of buoyancy of the hull. Cargo arrangements and loadings, crane operations, and the design sea states are usually taken into account. The diagram at the right shows that in the vast majority of vessels, the center of gravity is well above the center of buoyancy, yet the ship remains stable. The ship is stable because as it begins to heel, one side of the hull begins to rise from the water and the other side begins to submerge. This causes the center of buoyancy to shift toward the side that is lower in the water. The job of the naval architect is to make sure that the center of buoyancy shifts outboard of the center of gravity as the ship heels. A line drawn from the center of buoyancy in a slightly heeled condition vertically will intersect the centerline at a point called the metacenter. As long as the metacenter is further above the keel than the center of gravity, the ship is stable in an upright condition.
Damage stability calculations are much more complicated than intact stability. Software utilizing numerical methods are typically employed because the areas and volumes can quickly become tedious and long to compute using other methods.
The loss of stability from flooding may be due in part to the free surface effect. Water accumulating in the hull usually drains to the bilges, lowering the centre of gravity and actually decreasing (It should read as increasing, since water will add as a bottom weight there by increasing GM) the metacentric height. This assumes the ship remains stationary and upright. However, once the ship is inclined to any degree (a wave strikes it for example), the fluid in the bilge moves to the low side. This results in a list.
Stability is also lost in flooding when, for example, an empty tank is filled with seawater. The lost buoyancy of the tank results in that section of the ship lowering into the water slightly. This creates a list unless the tank is on the centerline of the vessel.
In stability calculations, when a tank is filled, its contents are assumed to be lost and replaced by seawater. If these contents are lighter than seawater, (light oil for example) then buoyancy is lost and the section lowers slightly in the water accordingly.
For merchant vessels, and increasingly for passenger vessels, the damage stability calculations are of a probabilistic nature. That is, instead of assessing the ship for one compartment failure, a situation where two or even up to three compartments are flooded will be assessed as well. This is a concept in which the chance that a compartment is damaged is combined with the consequences for the ship, resulting in a damage stability index number that has to comply with certain regulations.
Hiç yorum yok